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Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially
diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for
computation of nonelectrostatic ion—ion dispersion forces that underlie Hofmeister specific ion effects.
Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic
radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution.
It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic
ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations
should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as
nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors.

1. Introduction

An explanation of ion-specific effects categorized by Hofmeis-
ter series remains a key problem. Recently, it has become clear
that the proper inclusion of quantum mechanical ionic dispersion
interactions, missing from classical theories of electrolytes, lies
at the heart of the phenomena.! The calculation and specificity
of such forces, in either the continuum solvent approximation
or extensions to include solvent structure, requires ionic
polarizabilities, their frequency dependencies, and ionic radii
consistent with electronic polarization cloud distributions. Ion-
specific effects appear even at the cruder level of purely
electrostatic theories that omit dispersion interactions. They do
so there via ionic radii specific to each ion.

Indeed, Cheng et al. have identified that ion size plays a key
role in ionic surface activity.*> Anion affinities for the air—water
interface, measured by electrospray ionization mass spectrom-
etry, show a strong linear relationship between anion affinity
and anion radius. The relationship between anion affinity and
anion polarizability, on the other hand, is much less direct. To
adequately study ion-specific effects, it is therefore crucial that
ion size be correctly determined.

In developing electrolyte theory, the first and simplest entity
that appears is the Born electrostatic self-energy for an ion with
charge Q and hard-sphere radius as in a solvent with dielectric
constant &

2
Uy=—52 M

2a.¢,

In some studies, this formula is used to determine an effective
ion radius for a given self-energy, defined experimentally or
theoretically. For instance, Hummer, Pratt, and Garcia® calculate
a temperature-dependent self-energy from energy fluctuations,
corresponding to the second cumulant of an expansion of the
average Boltzmann factor of the electrostatic interactions
between an ion and an SPC/E partial charge model of water.
By fitting the ion radius a, in eq 1 against the calculated
cumulant, they propose that a temperature-dependent radius ay(7)

* Corresponding author. E-mail: drew.parsons@anu.edu.au.

10.1021/jp802984b CCC: $40.75

may be extracted. The temperature dependence of the self-
energy arises through the interaction of the ionic charge with
the solvent partial charges and through solvent—solvent interac-
tions. Solvent—solvent interactions may be assigned to a
temperature-dependent dielectric constant eo(7), and therefore
any temperature dependence in the ion radius would be largely
due to ion—solvent interactions. However, the dielectric constant
is relatively independent of temperature, with the value for water
varying by only 1% between 0 and 100 °C, indicating a low
temperature dependence in energy fluctuations due to solvent—
solvent interactions. It seems reasonable to expect that ion—solvent
interactions would similarly yield a relatively mild temperature
dependence. Hence, in this Article, we treat ion radius as a
constant independent of temperature, while the solvent dielectric
constant is fixed at T = 25 °C.

Other studies in the theory of electrolytes’® have used
Pauling® or Gourary—Adrian'® ionic radii. These are derived
from interionic distances (Pauling), or from electron density
minima (Gourary—Adrian), determined from X-ray diffraction
of salt crystals. Problems with the use of these radii are well
documented. Pauling’s radii involve a nonelectrostatic repulsion
term but neglect nonelectrostatic attraction (dispersion forces)
in the crystal. Crystallographic measurements depend on the
coordination number of the ion in the given crystal, which may
vary depending on the counterion. This leads to varying
estimates of the crystalline ionic radius. Marcus'! derived a set
of ionic radii extracted from the theory of liquids rather than
from solid-state theory. He estimated ionic radii from ion—water
distances taken from pair correlation functions determined from
X-ray or neutron scattering or from computer simulation. Thus,
the hard-sphere radii so obtained change depending on the ion
pair of the crystal or electrolyte on which the diffraction
experiment is performed. For instance, the estimate of a halide
ion radius varies depending on the cation with which it is
paired.'? This variation can be understood by taking a quantum
mechanical view of the ion. The excess charge is spatially
dispersed in a diffuse electron cloud rather than located on the
surface of a hard sphere. A deviation in ionic radius determined
by crystallographic nuclear separations is therefore to be
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Figure 1. The Rashin—Honig scheme for determining cationic hard-
sphere cavity radii.’* The anion (F) is at point A; the cation (Li%) is
at point D. The crystal anionic radius is length AC. The crystal cationic
radius is length CD. Rashin and Honig’s cavity radius for the cation is
length BD, where the electron density near the anion has risen to the
same level as point C (where the anionic radius intersects the cationic
electron density).

expected. It occurs, for example, due to varying degrees of
overlap between the electron clouds of cation and anion.

Rashin and Honig!? attempted to account for these changes
in electron overlap by taking the cavity radius for metal cations,
rather than intrinsic ionic radius, as the distance at which the
electron density around the counterion starts to become signifi-
cant. That is to say, with an anion (e.g., F) located at O (position
A) in Figure 1 and a cation (e.g., Li™) located at D, Rashin and
Honig measured the electron density at point C, at a distance
AC corresponding to the crystal ionic radius of the anion. The
crystal ionic radius of the cation would be length CD, but Rashin
and Honig take the cationic cavity radius to be distance BD.
This is the point where the electron density near the anion
becomes as strong as it was at point C where the anionic radius
intersected the cationic electron cloud. However, although based
on electron densities, this approach still yields a hard-sphere
radius, which is in principle inconsistent with the quantum view
of an ion with a diffuse electron cloud.

In considering the concept of ionic radius for ions in solution,
it is necessary to go further and take into account the role of
the ion’s hydration shell. Collins'*!5 identifies two kinds of ions:
at one extreme, cosmotropic ions, such as Li*, F~, have tightly
bound hydration shells. At the other extreme, chaotropic ions
have weakly bound hydration shells. Typical members of this
class are Cs™, Br™. This distinction between hydrated and
unhydrated radii is consonant with Rashin and Honig’s idea of
a cavity radius, which is distinct from the intrinsic ionic radius.
This choice of different radii has consequences for calculations
of electrostatic energies, as it affects the volume within which
the charge is contained. This is explored further in section 8.

2. Dispersion Forces and Molecular Size

A complete quantum description of ion—ion interactions
would include contributions from the permanent charge distribu-
tion as well as the charge fluctuations leading to nonelectrostatic
dispersion forces. The dispersion forces considered here refer
to induced dipole—induced dipole interactions. A third class of
interaction would be induction forces, that is, interactions
between the permanent charge and induced dipole. Induction
forces are implicated in solvent effects such as a reduction of
the polarizability of an ion in solution as compared to gas phase'®
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and, together with dispersion forces, play a role in the disruption
of the molecular water network in ionic hydration shells.!” The
dispersion forces considered in this section have been deve-
loped'®~22 by applying the Lifshitz theory to the electromagnetic
field of a polarizable particle, describing by its polarizability
o(iw) without consideration of its permanent charge. Induction
forces are included at the same level of semiclassical Lifshitz
theory by adding the permanent charge distribution alongside
the induced dipole at the entry point of the theory (Maxwell’s
equations); however; this theoretical development is beyond the
scope of the current Article. The relative magnitude of induction
energies may, however, be compared to dispersion and elec-
trostatic energies by considering zero-frequency contributions
to the self-energies in vacuum. The induction self-energy for
an ion with charge Q, radius a, and static polarizability a is
approximately Uipg = —Q%0p/2a* (cf., charge-induced dipole
interaction energy),”® while the dispersion self-energy is given
below, eq 3. The induction self-energies for Na, K, Cl, Br in
vacuum are —12.5, —56.1, —357.0, —201.4 kJ mol™!, respec-
tively, while dispersion self-energies in vacuum are 1913.1,
1359.8, 569.6, 410.3 kJ mol~!, respectively. That is, the
magnitude of induction self-energies may vary between 1% and
60% of the magnitude of dispersion self-energies.

The usual theory of dispersion forces for point molecules
assumes a separation between the electrostatic (permanent
charge with hard core repulsion) and nonelectrostatic (polariza-
tion charge). Given that assumption, extensions of the theory
to include molecular size have also been developed.'®™2 A
semiclassical spatially diffuse approximation to the polarizability
can be extracted from the full quantum mechanical expression
for the polarization density. It is applicable equally to ions with
a spherically symmetric Gaussian distribution:

~ exp(—rzlaz)
a(r,w)=(w)———— 2)
mina,
of the spatial polarizability distribution with Gaussian radius
ay. Semiclassical Lifshitz theory itself has been proven suc-
cessful, for instance, in correctly describing the Lamb shift.!
The Gaussian spatial distribution may be justified from the 1s
ground-state wave function.?*?> More sophisticated spatial
distributions based on a wider set of wave functions have been
studied,?®?’ leading Lu and Marlow?’ to suggest the use of an
exponential spread. Schmidt and McKinley, however, recom-
mend a Gaussian spatial distribution in favor over an exponential
(Slater-type) distribution.”> Moreover, the Gaussian model is
convenient for us because it is more readily extended to
nonspherical ions (see section 9) than other models.

With such a distribution to characterize finite size, one can
derive a dispersion self-energy that is the analogue of, and
additional to, the electrostatic Born self-energy of an ion. The
dispersion self-energy at temperature 7 in a solvent with
frequency-dependent dielectric function e(iw) is given in the
nonretarded limit by

_4kT < iw,)

\/ﬂaz n=0" €(iwn)

3

ds

where the prime in n = (' indicates that the zero frequency
term is taken with a factor of 1/2. The temperature-dependent
modal frequencies are as usual w, = 2mkTn/h. The full
expression for the dispersion self-energy includes retardation
and gives an excellent semiclassical result for the Lamb shift;
that is, the semiclassical theory for the polarization is a
reasonable approximation.!” The ion-specific character of the
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dispersion self-energy is evident not only in the dynamic
polarizability a(iw) but also in the Gaussian radius a,. Clearly,
an inconsistency will arise if a hard-sphere ionic radius a; is
used in place of the diffuse Gaussian radius a,.

A complication often avoided with the concept of an effective
ionic radius is the approximation that an ion can be treated as
if spherical, characterized to good enough approximation by a
single radius (whether hard-sphere or Gaussian distribution).
Yet complex ions are certainly not spherical. Nitrate (NO3),
for example, is planar, as is chlorate (C1O3). We here argue
that it may be more appropriate to characterize ionic size in
terms of volume rather than by radius. We therefore address
the question of defining ionic volumes in parallel with the
question of determining effective Gaussian radii.

The aim of this Article then is to present a consistent method
for determining Gaussian radii that describe the spatial spread
of the electron and polarization clouds for both ions and neutral
molecules. Ionic volumes are determined by ab initio quantum
calculations and mapped back onto a Gaussian model of the
electron cloud. The effects of these different Gaussian radii on
physical characteristics are compared to those with an equivalent
hard-sphere radius, using the electrostatic self-energy (Born
energy) of both models for comparison. The method is general-
ized to the case of nonspherical ions, yielding sets of three
nonisotropic spheroidal Gaussian radii.

Calculations are performed for a comprehensive set of simple
and complex ions of relevance to specific ion effects. We have
also included a small number of molecules of biological interest.
These are formamide (neutral molecule) as the simplest amide,
glycine (zwitterionic) as the simplest amino acid, ammonia,
ethanolamine (as the protonated cation), and choline. Because
the presence of dissolved gas has been implicated in discussions
of long-range hydrophobic forces,?®73? we also include the gas
molecules O,, N, and CO,.

3. Electron Density: Gaussian Model

The ionic polarizability derives from the response of the ionic
electron cloud to an external electric field. It seems reasonable
then to accept a model of the spatial structure of the ionic (or
molecular) charge distribution p(7) that matches the spatially
dispersed model used for the polarization density o7, w) (cf.,
eq 2), that is

(7, w) = a(w)p(7) “

where o(w) is the dynamic polarizability. The charge distribu-
tion is normalized by fd*7p(7) = 1. The excess charge density
q(7) of an ion with charge Q would then be ¢(7) = Qp(#).

We therefore propose, referring to the Gaussian spatial model
of the polarizability, eq 2, to model the ionic charge distribution
as

2
p(7) = VL exp| —- o)
g a,
V, describes the ionic (or molecular) volume, that is, the volume
within which the probability of finding the ion’s electrons is 1.
For the Gaussian model, V, = 7(v/7)"a,’.

By assigning a meaning to ionic or molecular volume in this
manner, we are able to establish a correspondence between the
diffuse ionic Gaussian radius a, defined above and the conven-
tional hard-sphere radius a,. The charge distribution of the hard
sphere is p(7) = 0(Irl < ay)/V; (or O(Irl = as) for Born’s original
charged shell)** with V, = 45ta3/3, the volume of the hard sphere.
For a given Gaussian radius, the equivalent hard-sphere radius
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may be determined by simply conserving the ionic volume, V;

= V,. Hence,
3V |”?
a,= ag(T) (6)

Equating the Gaussian and hard-sphere volumes underlines
the notion mentioned above that the fundamental unit of
molecular size is volume, not radius. By presenting data such
as self-energy in terms of volume, the question of whether it is
more appropriate to characterize the data using a Gaussian radius
or hard-sphere radius is in a sense avoided and treats nonspheri-
cal ions in a more meaningful manner.

4. Tonic and Molecular Volume

The question then becomes, how best can one assign a volume
to ions or neutral molecules? One approach is to use experi-
mental densities, of the solid salt, say, to derive molar volumes,
Vm = M/p. p here refers to macroscopic material density and
M to molar mass. This approach is problematic, particularly
for determining the volume of individual ions. It is problematic
for precisely the same reasons already mentioned, that the
volume per ion depends on the forces of interactions between
ions. Use of the density of the solid salt would require
subtraction of the volume of the counterion, leading to a
bootstrapping problem. It could only be resolved by starting
with predetermined hard-sphere ionic radii (Pauling, for instance,
artificially assigned a value of 0.6 A to the ionic radius of
Li").? This would introduce the contradiction already discussed
of forcing a fit of the extent of a diffuse electron cloud to a
hard-sphere contact radius. The seriousness of this contradiction
may be ameliorated by equating hard sphere and diffuse volumes
as remarked in the previous section. Yet other problems remain.
If the density of a solid salt is used in this way, what real
relationship do the resulting individual ionic volumes so
extracted have to the volume of the electron cloud of an
individual ion in solution? Moreover, experimental densities are
not available for all molecules and salts of interest in the context
of Hofmeister specific ion effects and dispersion interactions.
This in part too is because of residual hydration.

In the circumstances, the only way forward seems to lie in
appeal to ab initio quantum mechanics. Quantum chemical
software including Gaussian®* does have the functionality of
estimating molecular volumes based on the electron cloud of
the molecule (keyword Volume in Gaussian). We propose
therefore to use these ab initio volumes and extract Gaussian
radii from them. The calculation implemented by the Gaussian
program defines molecular volume as the space inside an
isodensity surface of py = 0.001 electrons/Bohr® (0.067 electron/
A3). This is essentially another hard-sphere volume; beyond this
volume there is “no more” electron density, and hence we refer
to this volume as the exclusive volume V.. It permits no overlap
between neighboring ions or molecules. We reconcile this hard-
sphere volume with the diffuse charge distribution of eq 5 by
taking p, to be the charge density at distance a.x, the hard-
sphere radius corresponding to the exclusive volume V. This
then enables us to determine the Gaussian radius using the ab
initio exclusive volume, by solving the transcendental equation
for ag,

2,2

exp(—a. /a,)
pla,) = % = p,=0.001 (7)
wna,
In general, there will be two solutions near a.,. We take the
smaller value (which is always less than a.; the larger solution
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Figure 2. Schematic of ionic charge density as a function of distance
from ion center, comparing the Gaussian radius a, against the equivalent
hard-sphere radius a, (conserving total volume), which allows for
electron cloud overlap. The exclusive hard-sphere radius a.x corre-
sponding to the ab initio exclusive volume, allowing no (or little)
overlap, is also marked. The sample radii here are for Cs™.

may sometimes be greater than a.,, which is unphysical. It
contradicts the notion of a., being the largest distance beyond
which there is “no further” electron density).

Depending on the ab initio exclusive volume, there may be
no solution to the equality in eq 7. In these situations, we employ
a least-squares approach, selecting a, to minimize [p(dex) — pol*

Once a, is determined in this way, we have the Gaussian
volume V, = 71(~/7)"?a}, which we interpret as the actual ionic
or molecular volume for the diffuse charge distribution. The
equivalent hard-sphere radius is a;. While a.y is the exclusive
hard-sphere radius that allows for no (or little) overlap of
electron clouds, a is a “soft” hard-sphere radius that does
include overlap; see Figure 2.

5. Details of Computational Procedures

Ab initio volume calculations are implemented in Gaussian
using numerical Monte Carlo integration. This introduces a fairly
large degree of error; therefore, we use keywords SCF=Tight
Volume=Tight and repeat the volume calculation 100 times for
each ion or molecule to reduce random error. Because of the
error, we test for an equality solution to eq 7 at the limits of
the error bars of V. before turning to the least-squares solution.
That is, we solve eq 7 for a, first using the average exclusive
volume V., accepting this solution if it exists. If it does not,
we solve the equality using volumes V. — AV and V., + AV,
where AV is the error in V. If both of these volumes provide
a solution, then we take the average, otherwise we accept the
single solution for a,. Finally, if none of the equalities for the
three volumes yields a solution, then we accept the least-squares
solution based on V.

For volume calculations, we use ab initio basis sets similar
to those required to calculate accurate polarizabilities. This
requires basis sets augmented with diffuse functions. The aug-
cc-* series of basis sets®>® have been found satisfactory.’”-8
Given the number of repetitions of the volume calculation
required, we use the faster aug-cc-pVDZ basis, rather than, say,
the more accurate aug-cc-pVQZ. Any difference in volume
between these basis sets would be well within the random error
of the Monte Carlo integration. aug-cc-* is not available for
the larger alkali and alkali earth metals. For these ions, we use
the ECPnMDF basis set (and pseudopotential).***® Standard
quantum chemical geometry optimizations (minimizing energy)
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were performed first before undertaking the volume and
polarizability calculations.

Calculations are performed at a Hartree—Fock (HF) level of
theory, for consistency with dynamic polarizability calculations
of a(iw) over imaginary frequencies.’” These calculations use
the Effective Fragment Potential method,*' which is incompat-
ible with higher methods incorporating electron correlations such
as Mgller—Plesset (e.g., MP2) or coupled-cluster (e.g., CCS-
D(T)). The difference in polarizability between calculations
using HF and electron correlations is not extreme for most of
the closed shell ions and molecules considered here. The electron
correlation correction to the polarizability of C1~, for instance,
is around 17%.* In any case, electron correlation has no
significant impact on ion volumes, which are the chief subject
of the present Article. For example, the volume of C1™ is 29.9
=+ 2.7 cm®mol under HF, and 28.3 £ 2.4 cm®*/mol under MP2,
exactly identical within error bounds.

The oxygen gas molecule needs special mention. We have
included the normal triplet state (multiplicity 3), which has an
open shell electronic structure, as well as the exotic closed shell
singlet state (multiplicity 1). Ab initio dynamic polarizabilities
are currently only available for closed shell molecules,’” hence
the need for the latter oxygen state. However, in the case of the
oxygen triplet state, the static polarizability is 1.461 and 1.422
A3 at HF and CCSD(T) levels of theory, respectively, justifying
the use of Hartree—Fock calculations for the triplet state.
Moreover, the static polarizability of the singlet state is 1.426
A3, so using it rather than the triplet state for dynamic
polarizability calculations is reasonable.

We note that there is a strong solvation effect on ion
polarizabilities. The gas-phase static polarizability of Cl™ is 5.5
A3 (with electron correlation),** but Car—Parrinello molecular
dynamics calculations of the chloride in solution reduce the
polarizability down to 4 A3'® a reduction of around 25%.
Nevertheless, while the effect of the solvation environment on
the polarizability of the electron cloud is significant, it seems
plausible that its effect on intrinsic ion volume will be smaller.
Ion solvation using quantum chemical electron structure calcula-
tions has been studied*® but is out of the scope for this Article.
The relationship of solvation shell to ion size is addressed at a
phenomenological level in section 8.

6. Molar Volumes and Gaussian Radii

Because the Gaussian model of eq 5 is a spherically
symmetric distribution, the procedure for determining a, makes
best sense for spherical ions and molecules (although the ab
initio volumes of nonspherical ions and molecules are still valid).
We therefore collect the ab initio exclusive volumes V., for
spherical ions in Table 1 along with the Gaussian radius a,
calculated from it. For reference, we also list the exclusive hard-
sphere radius a.,, the Gaussian molar volume V, derived from
a,, and the equivalent overlapped hard-sphere radius a, of the
ion or molecule. Experimental crystalline ionic radii (at their
smallest available coordination number)* for simple atomic ions
are presented in the table for comparison. The crystalline radii
agree reasonably well with our equivalent hard-sphere radii with
an average discrepancy of 0.2 A (typically about 15%), in some
cases matching exactly. Oxide gives the strongest discrepancy,
with an equivalent hard-sphere radius of 2.14 A but crystalline
ionic radius 1.21 A at coordination number 2 (or 1.40 A at
coordination number 6).

Because the theory of ionic and molecular interactions
between nonspherical ions and molecules is not yet well
developed, we list equivalent volumes and mean spherical radii
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TABLE 1: Static Polarizabilities 0, and Gaussian Radii a, for Spherical Ions*

ion oy (A% ay (A) V, (cm*/mol) as (A) Aerys (R) Vex (cm’/mol) aex (A)
F~ 1.218 1.02 3.5 1.12 1.33 154 +£0.9 1.83
ClI- 4.220 1.69 16.3 1.86 1.81 299+2.7 2.28
Br~ 6.028 1.97 25.6 2.16 1.96 353+32 2.41
I~ 8.967 2.12 32.0 2.33 2.20 442 +4.6 2.60
Li* 0.028 0.38 0.2 0.42 0.59 22409 0.95
Na® 0.131 0.61 0.8 0.67 0.99 59+2.0 1.33
K* 0.795 0.96 3.0 1.06 1.37 14.0+3.9 1.77
Rb* 1.348 1.12 4.7 1.23 1.52 179 +£49 1.92
Cs* 2.354 1.47 10.7 1.62 1.67 248 + 6.1 2.14
Frt 2.938 1.44 10.1 1.59 1.80 28.1 £3.7 2.23
Be?* 0.0075 0.28 0.08 0.31 0.27 1.1£05 0.75
Mg>* 0.068 0.50 0.4 0.55 0.57 40+ 1.4 1.16
Ca’* 0.475 0.80 1.7 0.88 1.00 10.1 £2.6 1.59
Sr2t 0.859 0.96 3.0 1.05 1.18 14.0 £3.8 1.77
Ba’* 1.567 1.21 5.9 1.33 1.35 19.9 +£4.8 1.99
Ra’* 1.982 1.35 8.3 1.49 1.48 22.8 +3.1 2.08
oxide O*~ 4.359 1.95 24.7 2.14 1.21 342+1.3 2.38
perchlorate 4.790 2.17 344 2.39 475 +3.1 2.66
sulfate 6.132 2.29 40.5 2.52 56.0 +£3.9 2.81
phosphate 9.891 2.40 46.2 2.64 638 +4.2 2.94
arsenate 11.430 2.44 48.7 2.68 67.4+4.8 2.99
ammonium 1.278 1.09 4.4 1.20 172+ 1.2 1.90
Me,N* 7.448 2.47 50.8 2.72 702 +£3.9 3.03

4V, is the corresponding gaussian molar volume, and a, is the equivalent hard-sphere radius (including electron overlap). ac.ys is the

experimental crystalline ionic radius (at smallest coordination number

).49

Vex is the ab initio exclusive molar volume with no electron overlap;

Gex is the corresponding exclusive hard-sphere radius. Me;N* refers to tetramethylammonium.

TABLE 2: Mean Isotropic Static Polarizabilities o, and Mean Spherical Gaussian Radii a, for Nonspherical Ions and

Molecules*
ion/molecule ay (A%) ag (A) Vg (cm*/mol) as (A) Vex (cm?/mol) ex (A)
hydronium H;O* 0.882 0.97 3.1 1.07 144+ 1.1 1.79
hydroxide 2.746 1.26 6.7 1.38 21.0+1.2 2.03
nitrate 4.008 2.01 27.3 2.21 37.8+£23 2.46
cyanide 3915 1.89 22.6 2.08 31.3+£2.0 2.32
thiocyanate 7.428 2.18 34.6 2.39 47.8 £ 4.1 2.67
triflate CF;SO3 6.402 2.44 48.7 2.68 673 +4.2 2.99
chlorate 5.488 2.14 32.7 2.35 452 +£3.0 2.62
carbonate 6.043 2.13 32.6 2.35 450+£25 2.61
bicarbonate 4.177 2.06 29.1 2.26 40.2+£2.6 2.52
hydrogen sulfate 5.089 222 36.9 2.45 51.0£3.9 2.72
hydrogen phosphate 6.846 232 42.0 2.55 580+ 4.4 2.84
dihydrogen phosphate 5.470 2.26 38.9 2.49 53.8£3.7 2.77
hydrogen arsenate 7.946 2.38 45.5 2.62 629 +4.2 2.92
dihydrogen arsenate 6.378 233 42.6 2.57 58.9 +£4.7 2.86
cacodylate 9.633 2.54 55.2 2.80 762 +5.3 3.11
formate 3.937 1.96 254 2.16 35.1+23 2.40
acetate 5.607 2.20 355 2.41 49.0 £2.7 2.69
tartrate 11.135 2.75 70.1 3.03 96.8 +4.3 3.37
citrate 16.051 3.02 92.1 3.32 1272 £5.1 3.69
water 1.230 1.04 3.7 1.14 159+ 1.1 1.85
ammonia 1.880 1.23 6.2 1.35 203+1.5 2.00
formamide 3.614 1.97 255 2.16 352+23 241
ethanolamine—H™ 5.042 2.22 36.9 2.45 51.0£25 2.72
glycine+ 5.812 2.26 38.8 2.49 53.6+3.0 277
choline 9.621 2.69 65.1 2.96 90.0 +4.7 3.29
N, 1.650 1.28 7.1 1.41 215+ 1.6 2.04
O, (triplet) 1.461 1.18 5.6 1.30 194+13 1.97
O, (singlet) 1.426 1.18 55 1.30 193+1.2 1.97
CO, 2.269 1.57 12.9 1.72 26.1 £2.2 2.18

4V, is the corresponding gaussian molar volume, and ay is the equivalent hard-sphere radius (including electron overlap). V., is the ab initio
exclusive molar volume with no electron overlap; a. is the corresponding exclusive hard-sphere radius.

for nonspherical molecules in Table 2. For our purposes, a
nonspherical ion or molecule is one with a nonisotropic
polarizability tensor (ammonium, for instance, is “spherical”
by this definition).

It is curious to note that the ionic volumes of protonated
complex ions are, counterintuitively, smaller than the deproto-

nated species. For instance, carbonate CO3~ is found to have a
Gaussian molar volume of 32.6 cm?® mol™!, while bicarbonate
HCO3 has a volume of only 29.1 cm?® mol~!. This trend is
consistent over all such samples, the sulfates, phosphates, and
arsenates, with the dihydrogen anion of the latter two being
again smaller than the first protonated anion. The trend is also
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Figure 3. Electrostatic solvation energy (self-energy) of singly charged
ions in water as a function of ionic volume. The solid curve represents
the Gaussian diffuse model of the charge distribution; the dotted curve
indicates the traditional hard-sphere Born model. For comparison, the
experimental values of selected ions are also given. Three sets of
cationic molar volumes are compared, based on (1) intrinsic radius,
(2) exclusive radius (no electron overlap), and (3) adding a solvent
layer.

true of ammonia as compared to ammonium, but is broken by
water, which is slightly smaller than the hydronium ion H;O™.

Finally, for consistency with section 9 where static polariz-
ability tensors of nonspherical ions are used, the mean isotropic
static polarizabilities are listed in Tables 1 and 2. These are
calculated at the Hartree—Fock level of theory using the aug-
cc-pVQZ and other basis sets used to calculate dynamic
polarizabilities’” (whereas the faster aug-cc-pVDZ was used for
volume calculations).

7. Application: Gaussian Electrostatic Self-Energy

The electrostatic self-energy for the charged Born hard sphere
was given in eq 1. Applying instead a Gaussian charge
distribution g(7) = Qp(7) (see eq 5), the electrostatic potential
derived from Poisson’s equation [2(7) = —4mp(F)/e is

B Q erf(r/a,)
N &

Y(r) (8)
The Gaussian electrostatic self-energy Us = —'/ofdrq(r)y(r)
is then

2
U= _L )
V2me a,
differing from the Born energy (eq 1) by a factor of 1/(~/27)"2
~ 1/2.5 rather than 1/2, which is about 20% smaller for the
same radius.

We compare the Gaussian estimate with the equivalent Born
hard-sphere electrostatic energy (using a, = ay(3(v/7)"2/4)'?)
via the solvation energy Uiy, which is the difference in self-
energy between solution and vacuum, Uy, = U[eo] — Us[vac].
The two solvation energies in water (gy = 78.12) are shown in
Figure 3 with selected ions marked. Experimental solvation
energies are also shown for comparison. We see that the effect
of the Gaussian model, even using equivalent spherical radii,
is to reduce the solvation energy by around 10%.

We emphasize that the calculation here refers only to the
electrostatic component of the self-energy. The full self-energy
also includes a nonelectrostatic dispersion component (as well
as ion—solvent interactions),®* and complete agreement with
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experimental solvation energies is not expected without those
components.

8. The Question of Solvated Ionic Radius

It is notable in Figure 3 that the experimental solvation
energies of the halogen anions, apart from F~, match reasonably
well with the theoretical curves, whereas the experimental values
for the alkali cations are far lower in magnitude than the
theoretical electrostatic solvation energies using intrinsic ionic
radii. Hence, the cavity effect of the cations’ solvation shells is
not accounted for.

A similar problem was addressed by Rashin and Honig."?
They indicated, as mentioned in the Introduction, that a
reasonable estimate of solvation cavity radius rather than
intrinsic ionic radius of cations is given by the distance at which
the electron density of the counterion (the anion) starts to rise.
They justified the treatment of metal cations in this way,
differently from the anions, by suggesting that the empty valence
shell of the cation contributes to the cavity volume (but not to
the intrinsic ionic volume). This indicates no or little overlap
with the cationic electron cloud. This scenario matches the ab
initio exclusive volumes, which we calculated at first. We
therefore include the experimental solvation energies of cations
plotted against exclusive volume in Figure 3. We find that
assignment of these volumes does bring the metal cations much
closer into line with the theoretical electrostatic solvation
energies. We do not expect this approach, that is, adding the
volume of the empty valence shell, will be relevant to complex
organic cations such as tetramethylammonium or choline.

We can apply an alternative correction to the radii of our
cations in solution by considering the solvated cation with a
single layer of water molecules. The degree of overlap between
the electron cloud of the cation and the water molecules is not
known a priori without further computation of the solvated
cluster system. It is not reasonable to simply add the Gaussian
radii of cation and water molecule to determine the Gaussian
radius of the solvated cation. However, we have already
identified the equivalent hard-sphere radius a as a radius that
allows for electron cloud overlap. It seems reasonable therefore
to sum these radii, so that the hard-sphere radius (with overlap)
of the solvated ion is @ = @l + a*". Equivalent Gaussian
radii of the solvated metal cations may be estimated by reversing
eq 6. With solvation volumes calculated to match these radii,
the positions of the experimental solvation energies of solvated
cations are marked in Figure 3 and are also seen to line up with
the theoretical curves.

The question of ion size with or without a water layer in the
context of solvation effects has been introduced in Collin’s
explanation of the phenomenon of chaotropic (disrupting water
structure) and cosmotropic (sustaining water structure) ions, 4>
Collins’ Law of Matching Water Affinities is a phenomenologi-
cal rule that addresses the capacity of ions to form ion pairs in
solution. It suggests that ion pair formation is governed by the
“hydration strengths” of the ions, with cosmotropes pairing with
other cosmotropes, and chaotropes with other chaotropes.
Cosmotropic ions then are those ions that are tightly bound to
their first solvation shell. Chaotropic ions are weakly bound to
their first solvation shell. Invoking this distinction between
cosmotrope and chaotrope, we could argue that strongly
hydrated metal cations (cosmotropes) such as Lit or Na* should
be treated using solvated ion volumes, as discussed in the
preceding paragraph. Weakly hydrated metals cations (chao-
tropes) such as Cs* should be treated using their bare ionic
volumes. Collins quantifies ion—water affinity via Jones—Dole
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viscosity B-coefficients:'*>! cosmotropes have positive while

chaotropes have negative B-coefficients. Of the group I cations,
Li* and Na™ are cosmotropes (although Na* is borderline), and
heavier cations (K*, Rb*, Cs*) are chaotropes. H' has a positive
B-coefficient; we assume therefore that the hydronium ion H;O"
is cosmotropic. The group II cations (Mg**, Ca*", Ba>", Sr**)
are all cosmotropic. In general, multiply charged ions are
cosmotropic when the ion is sufficiently small. It is not clear if
this rule continues to apply to macroions such as charged protein
molecules, but it remains valid> for the complex triply charged
cation citrate, a known cosmotrope.>*

It is reasonable to characterize anions according to the same
scheme. Of the halides, F~ is the only cosmotrope, while the
others are chaotropic (although C1™ is borderline). We apply
the multiple-charge rule to assume that oxide and tartrate are
cosmotropic. Of the complex anions, known cosmotropes (with
positive B-coefficient) include hydroxide, the carbonates, phos-
phates, sulfate, and carboxylates (formate and acetate). The
B-coefficient for HAsO7 ™ is not available, so we assume it to
be cosmotropic following the other arsenates (and HPO3™).
Complex chaotropes include nitrate and perchlorate. Ammonium
is also a chaotrope, while tetramethylammonium is cosmotropic.
The status of cyanide and thiocyanate is uncertain; with both
positive and negative B-coefficients reported, we accept the
negative estimates and take them to be chaotropic.'**! It is
curious that tetramethylammonium is indicated by the B-
coefficients to be cosmotropic, because this ion is relatively large
with large polarizability. Comparable singly charged ions such
as choline are more commonly chaotropic.>*

To summarize, for the purposes of estimating electrostatic
(not dispersion) energies in solution, chaotropic ions with a
weakly bound solvation shell should use ionic volumes and radii
as listed in Tables 1 and 2 (for the metal cations, exclusive
volumes without overlap should be used rather than intrinsic
Gaussian volumes). For cosmotropic ions with tightly bound
hydration shells, solvated ionic volumes should be used.
Solvated ionic volumes and mean spherical radii for known
cosmotropes are listed in Table 3.

The questions of solvated ion radius raised here are relevant
only in regards to electrostatic energies, eq 9 (or eq 1 for
chaotropic metal cations). Dispersion energies (e.g., eq 3) have
been explicitly formulated using the intrinsic Gaussian charge
distribution and should use Gaussian radii a, from Tables 1 and
2.

There ought not to be an exact match between the experi-
mental solvation energies and theoretical electrostatic energies
present in Figure 3 because the experimental energies include
both electrostatic and dispersion contributions. We will consider
the theoretical contribution of the latter in a separate paper
presenting ab initio calculations of dynamic polarizabilities.*’

Finally, we note that interactions between the ion and its
hydration shell involve quantum mechanical dispersion interac-
tions as well as purely electrostatic interactions. These quantum
effects were simplified in the estimates of solvated cosmotropic
ion sizes given in Table 3. Equivalent hard-sphere radii of ion
and water were used to provide an approximation of the electron
cloud overlap between ion and hydration shell. However, we
also expect that the ionic polarizabilities responsible for
dispersion interactions (cf., eq 3) for ions in vacuo will differ
from solvated ions in solution. That is, when applying eq 3 to
calculate the dispersion energy of a solvated ion, not only will
a different radius apply for the solvated ion, but also a different
dynamic polarizability a(iw) for the solvated system will be
required. The hydration shell modifies the polarizability of the
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TABLE 3: Solvated Molar Volumes and Mean Solvated
Spherical Radii, Used for Electrostatic Energies, for a
Selection of Cosmotropic Ions with Tightly Bound Hydration
Shells*

ion a, (A) Vioty (cm3/mol) as (A)
F~ 2.05 29.1 2.26
Li* 1.42 9.6 1.56
Na™* 1.64 14.9 1.81
Be?* 1.32 7.7 1.45
Mg** 1.54 12.3 1.69
Ca** 1.83 20.7 2.02
e 2.00 26.7 2.19
Ba?* 2.25 38.0 2.47
oxide O*~ 2.98 89.1 3.28
hydronium H;O" 2.01 27.3 2.21
hydroxide 2.30 40.6 2.53
carbonate 3.17 106.9 3.49
bicarbonate 3.09 99.2 3.40
sulfate 3.33 124.1 3.66
hydrogen sulfate 3.26 116.4 3.59
phosphate 3.43 135.8 3.78
hydrogen phosphate 3.36 127.1 3.69
dihydrogen phosphate 3.30 120.7 3.63
arsenate 3.48 141.1 3.82
hydrogen arsenate 3.42 134.4 3.76
dihydrogen arsenate 3.37 128.4 3.71
formate 3.00 90.6 3.30
acetate 3.23 113.3 3.55
tartrate 3.79 182.8 4.17
citrate 4.05 2235 4.46
tetramethylammonium 3.51 145.2 3.86

“a, is the solvated gaussian radius; a, is the equivalent solvated
hard-sphere radius. Quantities obtained by adding the hard-sphere
radii of water to the bare ion, a?® = a" + a¥**". Cosmotropic ions
are identified as those with a positive Jones—Dole B-coefficient.!*!

ion due to the interaction between the ionic electron cloud and
the solvent molecules in the hydration shell. Likewise, the ion
will affect the polarization response of those solvent molecules.

Moreover, returning to the electrostatic solvation energy Ugoy,
we saw that the use of a hydrated cavity radius for cations
brought the energy in line with experimental values. However,
because U,y = Usleg]l — Us[vacl], it is clearly inadequate to
take the same hydrated cavity radius used for the self-energy
Uy[&o] in solution and apply it to the self-energy Uj[vac] in
vacuum. It makes sense to only use the smaller intrinsic ionic
radius to describe the self-energy in vacuum, which leads to
the severe overestimate in solvation energy seen in cations
before accounting for cavity radii. An inconsistency in the use
of the ionic radius for electrostatic interactions therefore remains.
While accounting for solvent spatial structure® % will partially
correct the discrepancy, it seems likely an additional hydration
energy term, comparing the naked ion in vacuum against the
solvated ion cluster in vacuum, will also be required.

Thus, a full theoretical description of solvation energies
requires a consistent description of the solvated cluster, deter-
mining not only ionic, or solvated cluster, volumes, and radii,
but also calculating polarizabilities of the solvated clusters taken
as a whole. The final result is a balance between the competing
effects of larger cluster size (which decreases electrostatic and
dispersion self-energies) and cluster polarizability (which will
strengthen the dispersion self-energy for ions whose intrinsic
polarizability is less than that of water). From the ambiguity
discussed above concerning the proper radius of ionic cations,
it seems clear that a simple, bare ion description of solvation
effects will never fully reproduce experimental solvation ener-
gies. Existing studies®®*® have focused on separating the static
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TABLE 4: Static Anisotropic Polarizabilities o, o, o, and Anisotropic Gaussian Radii a,, a,, a, for Nonspherical Ions and

Molecules
name o, (A%) a, (A% o (A%) a, (A) a, (A) a. (A)
hydronium H;0™" 0.948 0.948 0.750 1.05 1.05 0.83
hydroxide 2.496 2.871 2.871 1.15 1.32 1.32
nitrate 4.618 4.618 2.787 2.38 2.38 1.44
cyanide 3.518 3.518 4.709 1.71 1.71 2.29
thiocyanate 6.154 6.153 9.977 1.85 1.85 3.01
triflate CF;SO3 6.299 6.299 6.609 2.40 2.40 2.52
chlorate 6.457 6.457 3.551 2.61 2.61 1.43
carbonate 6.601 6.601 4.928 2.35 2.35 1.76
hydrogen carbonate 4.774 4.517 3.238 2.38 2.25 1.62
hydrogen sulfate 5.162 5.086 5.019 2.26 222 2.19
hydrogen phosphate 6.994 6.811 6.732 2.37 231 2.28
dihydrogen phosphate 5.330 5.392 5.687 221 223 2.36
hydrogen arsenate 8.108 7.993 7.736 243 2.40 232
dihydrogen arsenate 6.737 6.223 6.173 247 2.28 2.26
cacodylate 9.114 10.287 9.497 2.41 2.72 2.51
formate 4.688 4.188 2.934 2.38 2.13 1.49
acetate 6.157 6.169 4.496 2.44 2.44 1.78
tartrate 12.320 11.391 9.692 3.06 2.83 2.41
citrate 17.668 15.577 14.907 3.33 2.94 2.81
water 1.315 1.222 1.152 1.11 1.03 0.97
ammonia 1.846 1.846 1.947 1.20 1.20 1.27
formamide 4.469 3.651 2.723 2.48 2.03 1.51
ethanolamine—H* 5.840 4.818 4.468 2.59 2.14 1.98
glycine+ 6.203 6.665 4.568 2.44 2.63 1.80
choline 10.654 9.206 9.003 2.98 2.58 2.52
CO, 1.723 1.723 3.359 1.25 1.25 2.45
O, (triplet) 1.026 1.026 2.331 0.90 0.90 2.05
O, (singlet) 1.106 1.094 2.078 0.96 0.95 1.81
N, 1.417 1.417 2.117 1.12 1.12 1.67

polarizability of the ion from within the solvated cluster but
have not studied the polarizability of the solvated cluster as a
single entity, thereby omitting effects of the ion on the solvation
shell.

Rather, we expect greater success working with solvated ion
clusters, with dispersion energies arising from the dynamic
polarizabilities of the solvated clusters taken as a whole. This
will be the subject of future work.

9. Nonspherical Ions and Molecules

The spherical Gaussian charge distribution of eq 5 may be
generalized to the nonspherical case using an ellipsoidal
distribution,

sl (i) o

with anisotropic Gaussian radii a,, a,, and a,. In this case, the
ionic volume is V = m(v/m)a,a,a..

We determine the aspect ratio of the ellipsoid using the
nonisotropic polarizability tensor, taking only the diagonal
elements o, o, &, (assuming off-diagonal elements are zero).
If the aspect ratio is preserved, then the size of the nonspherical
ion is determined by a single parameter, the girth g, relating
the anisotropic Gaussian radii to the polarizability elements such
that

Qa, o

—8.4,= 8.4, = —g (11
N )

where @, is the mean isotropic static polarizability, o,y = (o, +
o, + a.)/3. The girth g is the mean isotropic (spherical) radius
with dimensions of length and equals the spherical radius when
the ion or molecule is spherical.

The exclusive volume V., of section 2 remains the same,
inscribed by an isodensity surface at py = 0.001 electron/Bohr?.
The corresponding exclusive ellipsoid has anisotropic exclusive
radii af* = g 0/Q, i = x, y, z. The exclusive girth ge is
determined from the ab initio exclusive volume, which for a
hard spheroid equals Ve, = 4mad*a$*aS/3 = 4dma,o,0.85/303.

Let us consider the extremal points on the exclusive surface,

71=(a$, 0,0), 7= (0, a5*, 0), 73 = (0, 0, af*). At each of these

points, p(7;) = po. For instance, for 7y,

exp{—[(a>/a,)* + 0+ 0]} _ o) exp{—(g./2)’} _

oo,

P(7 1) = 3
azg

po (12)

The same equation in g appears for 7, and 73. Thus, we obtain
a transcendental equality in g, similar to eq 7 for the spherical
case. The solution is the same apart from the introduction of
the polarizability parameters o (thus the spherical problem of
section 4 is a special case of the nonspherical problem where
the polarizability terms cancel). Solving for g gives us the
anisotropic Gaussian radii a,, a,, a..

As before, there may be two solutions for g close to gex; we
accept the smaller solution. We allow the exclusive volume to
relax within its error bars in seeking a solution to the equality.
Where there is no solution, we accept the least-squares solution
varying g to minimize [p(g) — pol’

The anisotropic polarizabilities and corresponding anisotropic
Gaussian radii for nonspherical ions and molecules are given
in Table 4. These are properties of the bare ions and molecules,
without consideration of hydration shells. Again, static polar-
izability tensors were calculated at the Hartree—Fock level of
theory using aug-cc-pVQZ and other basis sets used in calcula-
tions of dynamic polarizabilities.’” Note that, because the

v ma.a,a,
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geometric mean of the three anisotopic polarizability tensor
elements is nearly equal to the arithmetic mean, the ellipsoidal
Gaussian volumes V, are the same (within the given precision)
as those calculated using the spherical approximation and are
already listed in Table 2.

10. Conclusion

Ab initio exclusive volumes have been calculated for a range
of ions and molecules and used to derive Gaussian radii for a
spatially diffuse model of the ion or molecule‘s charge distribu-
tion. These Gaussian radii have immediate application in existing
theories of dispersion interactions, which have been developed
using polarizabilities with the same spatial distribution. The
corresponding form for the electrostatic self-energy has also been
derived.

Together with the calculation of ab initio dynamic polariz-
abilities of the same ions and molecules,” this paves the way
toward a more quantitative accurately theoretical description
of ion-specific effects. The ionic radii presented in this Article
are intended to play a role as one of several input parameters,
alongside ionic charge, ionic polarizability, and solvent dielectric
function, which together give a complete description of elec-
trolyte properties, including both electrostatic and dispersion
interactions. Preliminary calculations indicate that our radii (and
dynamic polarizabilities), including the distinction drawn be-
tween cosmotropic and chaotropic ions, are successful at
reproducing the Hofmeister series of alkali halides, providing
quantitatively reasonable activity coefficients without further
fitting of ionic radii.

Analysis of electrostatic solvation energies indicates there are
still open questions with regard to the effect of an ion’s solvation
shell. The solvation shell does not appear to be important for
chaotropic ions, where it is weakly bound, but must be included
as part of the solvation complex of cosmotropic ions. The free
energy of solvated ion clusters and periodic systems with explicit
water molecules has been studied via ab initio Car—Parrinello
molecular dynamics,*~#8:606! demonstrating that the local sol-
vation environment must indeed be included to gain accurate
solvation energies. We suggest it may be appropriate to consider
the solvated ion cluster calculated in these kind of studies as
the basic unit entering into theoretical continuum models, with
ion polarizability and ion radius referring to that of the solvated
ion rather than the bare ion. By taking electrostatic and
dispersion interactions together in this hydrated ion model, along
with solvent—solvent correlations via a k-dependent description
of the solvent, % a softer potential should be obtained that
accounts for ion—solvent as well as ion—ion interactions. This
leads to a kind of generalized Gurney potential with interaction
between ions being mediated by overlap of their hydration shells
and should provide a framework for distinguishing between hard
and soft ions.

Another important factor in need of theoretical application
is the effect of ionic anisotropy. To that end, we have calculated
anisotropic Gaussian radii for nonspherical ions and molecules
on the basis of their nonisotropic static polarizability tensors.
We expect the question of anisotropy will prove particularly
pertinent to surface and interface phenomena, where the
interaction of a flat molecule at a surface will be markedly
different when aligned perpendicular to or parallel with the
surface.

Both of the conditions discussed here of a hydrated and an
anisotropic ion meet in the example of the hydroxide ion. There
is experimental evidence of specific adsorption of hydroxide
ions at the air—water interface;*> yet molecular dynamic
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simulations predict a depletion of hydroxide ions at the surface.%
The hydrated hydroxide ion [OH+(H,0);]” is a near-planar
tetrahedral complex.®!%+% We suggest that MD simulations
treating the hydrated hydroxide ion as a single entity may have
greater success in predicting surface adsorption.

References and Notes

(1) Ninham, B.; Yaminsky, V. Langmuir 1997, 13, 2097-2108.

(2) Kunz, W.; Lo Nostro, P.; Ninham, B. W. Curr. Opin. Colloid
Interface Sci. 2004, 9, 1-18.

(3) Bostrom, M.; Williams, D.; Ninham, B. Langmuir 2001, 17, 4475—
4478.

(4) Cheng, J.; Vecitis, C. D.; Hoffmann, M. R.; Colussi, A. J. J. Phys.
Chem. B 2006, 110, 25598-25602.

(5) Cheng, J.; Hoffmann, M. R.; Colussi, A. J. J. Phys. Chem. B 2008,
112, 7157-7161.

(6) Hummer, G.; Pratt, L.; Garcia, A. J. Phys. Chem. A 1998, 102,
7885-7895.

(7) Kunz, W.; Belloni, L.; Bernard, O.; Ninham, B. J. Phys. Chem. B
2004, 708, 2398-2404.

(8) Blum, L.; Fawcett, W. R. J. Phys. Chem. 1992, 96, 408—414.

(9) Pauling, L. J. Am. Chem. Soc. 1927, 49, 765-790.

(10) Gourary, B. S.; Adrian, F. J. In Solid State Physics; Seitz, F.,
Turnbull, D., Eds.; Academic Press Inc.: New York, 1960; Vol. 10, p 128.

(11) Marcus, Y. Chem. Rev. 1988, 88, 1475-1498.

(12) Johnson, O. Inorg. Chem. 1973, 12, 780-785.

(13) Rashin, A. A.; Honig, B. J. Phys. Chem. 1985, 89, 5588-5593.

(14) Collins, K. Biophys. Chem. 2006, 119, 271-281.

(15) Collins, K. D. Methods 2004, 34, 300-311.

(16) Jungwirth, P.; Tobias, D. J. Phys. Chem. A 2002, 106, 379-383.

(17) Dorsett, H.; Watts, R.; Xantheas, S. J. Phys. Chem. A 1999, 103,
3351-3355.

(18) Mahanty, J.; Ninham, B. W. Dispersion Forces; Academic Press:
London, 1976.

(19) Mahanty, J. Nuovo Cimento B 1974, 22, 110.

(20) Mahanty, J.; Richardson, D. D. J. Phys. C: Solid State Phys. 1975,
8, 1322-1331.

(21) Mahanty, J.; Ninham, B. W. Faraday Discuss. Chem. Soc. 1975,
59, 13-21.

(22) Mahanty, J.; Ninham, B. W. J. Chem. Phys. 1973, 59, 6157-6162.

(23) Netz, R. R. Curr. Opin. Colloid Interface Sci. 2004, 9, 192-197.

(24) Richardson, D. D. J. Phys. A: Math. Gen. 1975, 8, 1828-1841.

(25) Schmidt, P.; McKinley, J. J. Chem. Soc., Faraday Trans. 2 1976,
72, 143-170.

(26) Paranjape, V. V.; Mahanty, J. Phys. Rev. A 1979, 19, 2466-2469.

(27) Lu, J. X.; Marlow, W. H. Phys. Rev. A 1995, 52, 2141-2154.

(28) Alfridsson, M.; Ninham, B.; Wall, S. Langmuir 2000, 16, 10087—
10091.

(29) Kim, H.; Tuite, E.; Nordén, B.; Ninham, B. Eur. Phys. J. E 2001,
4, 411-417.

(30) Bunkin, N. F.; Kochergin, A. V.; Lobeyev, A. V.; Ninham, B. W ;
Vinogradova, O. 1. Colloids Surf., A: Physicochem. Eng. Aspects 1996, 110,
207-212.

(31) Craig, V.; Ninham, B.; Pashley, R. Langmuir 1999, 15, 1562-1569.

(32) Ninham, B. Prog. Colloid Polym. Sci. 2006, 133, 65-73.

(33) Born, M. Z. Phys. 1920, 1, 45-49.

(34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(35) Thom, H.; Dunning, J. J. Chem. Phys. 1989, 90, 1007-1023.

(36) Woon, D. E.; Thom, H.; Dunning, J. J. Chem. Phys. 1993, 98, 1358—
1371.

(37) Parsons, D. F.; Ninham, B. W., submitted for publication.

(38) Serr, A.; Netz, R. R. Int. J. Quantum Chem. 2006, 106, 2960—
2974.

(39) Lim, I. S.; Schwerdtfeger, P.; Metz, B.; Stoll, H. J. Chem. Phys.
2005, 7122, 104103.



1150 J. Phys. Chem. A, Vol. 113, No. 6, 2009

(40) Lim, I. S.; Stoll, H.; Schwerdtfeger, P. J. Chem. Phys. 2006, 124,
034107.

(41) Adamovic, I.; Gordon, M. Mol. Phys. 2005, 103, 379-387.

(42) Woon, D. E.; Thom, H.; Dunning, J. J. Chem. Phys. 1994, 100,
2975-2988.

(43) Grabowski, P.; Riccardi, D.; Gomez, M.; Asthagiri, D.; Pratt, L. J.
Phys. Chem. A 2002, 106, 9145-9148.

(44) Rempe, S.; Pratt, L.; Hummer, G.; Kress, J.; Martin, R.; Redondo,
A. J. Am. Chem. Soc. 2000, 122, 966-967.

(45) Asthagiri, D.; Pratt, L. R.; Kress, J. D.; Gomez, M. A. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 7229-7233.

(46) Asthagiri, D.; Pratt, L. R. Chem. Phys. Lett. 2003, 371, 613-619.

(47) Geissler, P. L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello,
M. Science 2001, 291, 2121-2124.

(48) Izvekov, S.; Voth, G. A. J. Chem. Phys. 2005, 123, 044505.

(49) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 84th
ed.; CRC Press: New York, 2004.

(50) Collins, K. D. Biophys. J. 1997, 72, 65-76.

(51) Jenkins, H. D. B.; Marcus, Y. Chem. Rev. 1995, 95, 2695-2724.

(52) Salabat, A.; Shamshiri, L.; Sahrakar, F. J. Mol. Lig. 2005, 118,
67-70.

(53) Olah, S.; Kremmer, T.; Boldizsar, M. J. Chromatogr., B 2000, 744,
73-79.

Parsons and Ninham

(54) Vrbka, L.; Jungwirth, P.; Bauduin, P.; Touraud, D.; Kunz, W. J.
Phys. Chem. B 2006, 110, 7036-7043.

(55) Kornyshev, A. A. J. Chem. Soc., Faraday Trans. 2 1983, 79, 651—
661.

(56) Basilevsky, M. V.; Parsons, D. F. J. Chem. Phys. 1998, 108, 9107—
9113.

(57) Basilevsky, M. V.; Parsons, D. F. J. Chem. Phys. 1998, 108, 9114—
9123.

(58) Parsons, D. F.; Ninham, B. W, in preparation.

(59) Jungwirth, P.; Curtis, J. E.; Tobias, D. J. Chem. Phys. Lett. 2003,
367, 704-710.

(60) Tobias, D. J.; Jungwirth, P.; Parrinello, M. J. Chem. Phys. 2001,
114, 7036-7044.

(61) Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925—
929.

(62) Karraker, K. A.; Radke, C. J. Adv. Colloid Interface Sci. 2002, 96,
231-264.

(63) Jungwirth, P.; Tobias, D. Chem. Rev. 2006, 106, 1259-1281.

(64) Robertson, W. H.; Diken, E. G.; Price, E. A.; Shin, J.-W.; Johnson,
M. A. Science 2003, 299, 1367-1372.

(65) Cappa, C.; Smith, J.; Messer, B.; Cohen, R.; Saykally, R. J. Phys.
Chem. A 2007, 111, 4776-4785.

JP802984B



